LGBM
[python] SMOTE를 활용한 오버샘플링
이번에는 SMOTE를 활용한 오버샘플링을 적용해보겠습니다. 일반적으로 언더샘플링보다 오버샘플링이 예측 성능상 더 유리한 경우가 많아 주로 사용됩니다. ## 오버샘플링? 이상 데이터와 같이 적은 데이터 세트를 증식하여 학습을 위한 충분한 데이터를 확보하는 방법으로, 동일한 데이터의 단순 증식은 과적합을 유발할 수 있기 때문에 의미가 없으므로 원본 데이터의 피처값들을 아주 약간씩 변형하여 증식 여기서 주의할 점은 SMOTE를 적용할 때는 반드시 학습 데이터 세트만 오버샘플링을 해야합니다!!! 검증 데이터 세트 혹은 테스트 데이터 세트를 오버샘플링 하는 경우 결국 원본 데이터가 아닌 데이터 세트에서 검증되기 때문에 올바른 검증이 되지 않습니다. 캐글의 Credit Card Fraud Detection 데이터를..
[python] LGBMClassifier 단번에 성능 높이기
Light GBM은 XGBoost보다 개선된 성능과 빠른 수행률을 보여주어 많은 대회의 상위 랭커들이 활용하는 모델이라고 할 수 있습니다! 저는 LGBMClaasifier 모델을 활용할 때 특히 주의해야 할 부분을 짚어보려고 하는데요, LGBMClassifier hyper parameter 중 'boost_from_averge' 설정입니다. Light GBM이 버전업 됨에 따라 boost_from_average 파라미터의 디폴트 값이 False에서 True로 변경되었습니다. 레이블 값이 극도로 불균형한 분포인 데이터의 경우 boost_from_average = True 값은 재현율과 roc_auc_score를 매우 저하시킵니다! Light GBM 2.1.0이상 버전이거나, 불균형한 데이터 세트에서 예측 ..