fit_sample()

    [python] SMOTE를 활용한 오버샘플링

    [python] SMOTE를 활용한 오버샘플링

    이번에는 SMOTE를 활용한 오버샘플링을 적용해보겠습니다. 일반적으로 언더샘플링보다 오버샘플링이 예측 성능상 더 유리한 경우가 많아 주로 사용됩니다. ## 오버샘플링? 이상 데이터와 같이 적은 데이터 세트를 증식하여 학습을 위한 충분한 데이터를 확보하는 방법으로, 동일한 데이터의 단순 증식은 과적합을 유발할 수 있기 때문에 의미가 없으므로 원본 데이터의 피처값들을 아주 약간씩 변형하여 증식 여기서 주의할 점은 SMOTE를 적용할 때는 반드시 학습 데이터 세트만 오버샘플링을 해야합니다!!! 검증 데이터 세트 혹은 테스트 데이터 세트를 오버샘플링 하는 경우 결국 원본 데이터가 아닌 데이터 세트에서 검증되기 때문에 올바른 검증이 되지 않습니다. 캐글의 Credit Card Fraud Detection 데이터를..